NUS develops 3 new designs for test swabs; 40m on the way

Timothy Goh

NUS deputy president (innovation and enterprise) Freddy Boey said yesterday that Singapore has been relying on suppliers from the United States, Italy and other parts of Europe for its swabs. But the surge in coronavirus cases around the world has led to a global shortage as countries turn to mass testing to reopen their economies.

That prompted two NUS teams to link up with Temasek Foundation to develop three different nasopharyngeal swab designs that can be made using 3D printing and a manufacturing process known as injection moulding.

This has given Singapore the capability and know-how to produce its own swabs.

Professor Boey said he believes this makes Singapore the first country in the world to use injection moulding to produce swabs.

NUS’s development also means it is the first in Asia to use 3D printing to do this.

Nasopharyngeal swabs are small, flexible sticks that are inserted through the nose to the back of the nasal cavity to collect fluid samples.

They need a specially designed tip to capture and retain the fluid in order for the test to be accurate.

A team led by NUS senior vice-president (health innovation and translation) John Erle Wong; Associate Professor Yen Ching-Chiaan, the co-director of the Keio-NUS Connective Ubiquitous Technology for Embodiments Centre; and Professor Jerry Fu, director of the NUS Centre for Additive Manufacturing, developed a 3D-printed swab named Python.

The team also worked with the NUS Yong Loo Lin School of Medicine, the NUS School of Design and Environment and NUS Faculty of Engineering, as well as the National University Hospital (NUH).

NUS said that Python was tested against an industry standard swab on patients with Covid-19 and demonstrated comparable accuracy and performance, with no significant difference from the standard swab.

A patent has been filed for the swab, which is being mass-produced by two local companies. The swabs’ designs are free for use in Singapore.

NUS’ work did not stop there. Another team led by Prof Boey came up with two swab designs, known as IM2 and IM3, that can be produced through injection moulding.

Prof Boey said the process is faster than 3D printing, allowing several hundred swabs to be produced in a matter of minutes.

“The use of injection moulding ensures a secure source to supply high volumes of swabs at a low cost, to meet the needs of our community and beyond. This is crucial in our continued fight against the pandemic,” he added.

Patents have been filed for the two designs, which are undergoing clinical trials at NUH and Singapore General Hospital.

Prof Boey and his team are now working with four companies to mass manufacture and sterilise the injection-moulded swabs.

In the meantime, the Python swabs will serve to “hold the fort” until IM2 and IM3 are ready for mass production.

NUS president Tan Eng Chye said: “We are proud that our researchers have stepped forward this time of need. They have worked very hard, under great time pressure…so that these swabs can be mass manufactured locally and affordably to meet Singapore’s needs.”

tingoh@nus.edu.sg

Source: The Straits Times © Singapore Press Holdings Ltd.
Permission required for reproduction