Retinal Ganglion Cell Analysis Using High-Definition Optical Coherence Tomography in Patients with Mild Cognitive Impairment and Alzheimer’s Disease

Carol Yin-lui Cheunga,b,c,1,*, Yi Ting Onga,b,1, Saima Hilaibb,c,e, M. Kamran Ikramab,c,e, Sally Lawa, Yi Lin Onga, N. Venketasubramaniana, Philip Yapf, Dennis Seowg, Christopher Li Hsien Chenb,h,2 and Tien Yin Wonga,b,c,2

aSingapore Eye Research Institute, Singapore National Eye Centre, Singapore
bDepartment of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
cOffice of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore
dNUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
eMemory Aging and Cognition Centre, National University Health System, Singapore
fDepartment of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore
gDepartment of Geriatric Medicine, Singapore General Hospital, Singapore
hDepartment of Pharmacology, National University of Singapore, Singapore

Accepted 11 November 2014

Abstract.

Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with emerging evidence that it is associated with retinal ganglion cell loss; however, few data exist to establish this association.

Objective: To determine whether macular ganglion cell-inner plexiform layer (GC-IPL) and retinal nerve fiber layer (RNFL), as quantitatively measured by non-invasive in vivo spectral-domain optical coherence tomography (SD-OCT), are altered in patients with AD and mild cognitive impairment (MCI).

Methods: Patients with AD and MCI were recruited from dementia/memory clinics, and cognitively normal controls were selected from the Singapore Epidemiology of Eye Disease program. SD-OCT (Cirrus HD-OCT, software version 6.0.2, Carl Zeiss Meditec Inc, Dublin, CA) was used to measure the GC-IPL and RNFL thicknesses.

Results: Compared with cognitively normal controls (n = 123), patients with AD (n = 100) had significantly reduced GC-IPL thicknesses in all six (superior, superonasal, inferonasal, inferior, inferotemporal, and superotemporal) sectors (mean differences from −3.42 to −4.99 μm, all p < 0.05) and reduced RNFL thickness in superior quadrant (−6.04 μm, p = 0.039). Patients with MCI (n = 41) also had significantly reduced GC-IPL thicknesses compared with controls (mean differences from −3.62 to −5.83 μm, all p < 0.05). Area under receiver operating characteristic curves of GC-IPL were generally higher than that of RNFL to discriminate AD and MCI from the controls.

Conclusions: Our data strengthens the link between retinal ganglion cell neuronal and optic nerve axonal loss with AD, and suggest that assessment of macular GC-IPL can be a test to detect neuronal injury in early AD and MCI.

Keywords: Alzheimer’s disease, mild cognitive impairment, neurodegenerative disorder, optic nerve, retinal ganglion cell, spectral-domain optical coherence tomography

*These authors contributed equally to this work as first authors.
1These authors contributed equally to the work as last authors.
*Correspondence to: Dr. Carol Y. Cheung, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Tel. +65 6378 7233, E-mail: carol.cheung.y.l@seri.com.sg.